
search features of GRIN-Global Page | 1

Searching in GRIN-Global

Revision Date
June 26 2025

The Search Engine has evolved in GRIN-Global. This documentation refers to the Search Engine
used in server release 1.9.9.2 or higher.

Please send any questions related to marty.reisinger@usda.gov.

The Appendix contains change notes pertaining to this document.

Author
Martin Reisinger

Major Contributor
Kurt Endress

search features of GRIN-Global Page | 2

TOC
Search Engine and Search Tool Overview ... 4

Overview ... 4
Search Engine Evolution - Enhancements in Server Release 1.9.9.2 .. 6
Speed Improvements .. 6
Public Website ... 7
Advanced Searches ... 8

What Does the Search Engine Search? ... 9
List Search on the Public Websites ... 10
List Search in the Search Tool ... 11
Extension of the List Search .. 12

Search Comments ... 13
Curator Tool – Searching via Dynamic Folders ... 13

Dynamic Folders .. 13
IDs & Lookups .. 14
Wildcards and finding Empty / Missing Stuff / Nulls .. 15

Using Quotes ... 15
NOT EQUAL TO .. 16
Nulls ... 16
NOT IN ... 16

Reserved Words & Wildcards -- Examples .. 18
Wildcard / Operator / Reserved Words .. 18
IS NULL / IS NOT NULL .. 19
IN / NOT IN .. 19
LIKE .. 19
BETWEEN ... 19
Date Fields ... 19
GETDATE() ... 20
DATEDIFF() .. 20
WHERE... 20
COUNT(*) .. 20
Subqueries ... 20
DISTINCT .. 21
LEN function .. 21
EXCEPT... 21
INTERSECT ... 22
--DUMPSQL ... 23

Full Text Indexing .. 25
Considerations .. 26

search features of GRIN-Global Page | 3

Extended SQL Support .. 28
WHERE... 28
NOT ... 28
BETWEEN ... 28
INTERSECT ... 28
EXCEPT FUNCTION .. 30
LEN function .. 30
DateDiff function to find recent viabilities .. 31
Subqueries ... 31
DISTINCT .. 32
NOT EXISTS .. 32
Displaying the SQL: --DUMPSQL ... 33

Appendix A: Fields used in the GG Searches 34
Autofields .. 34

SQL to List the “Autofields” Used in the Search Box ... 34
Full Text Indexing .. 35

SQL to List the Fields Having Full Text Indexes ... 35

Appendix B: SQL Queries on the Public Website 36
Overview ... 36
3 Basic Components .. 36
Public Website Searches Using the @... 37

Appendix C: Administrator Notes on Sorting Search Results 38

Appendix D: Document Change Notes 40

search features of GRIN-Global Page | 4

Search Engine and Search Tool Overview
Overview
Currently, the main two GRIN-Global (GG) user applications are the Curator Tool and the Search Tool.
This document differentiates between the “Search Tool” and the “Search Engine.” The Search Tool is the
application which a genebank staff person uses to communicate with the search engine. The search
engine is the logic/program that queries the database and returns matching records. Besides the search
tool application, the GG public website also uses the search engine. The GG search engine has evolved
since GG started and periodically is updated with additional enhancements.

SQL Server Full-Text Indexing
At the U.S. National Plant Germplasm System (NPGS), Microsoft SQL’s Full-Text Indexing feature was
implemented simultaneously with server release 1.9.9.2. SQL Server Full-Text Indexing allows searching
for single words in large text fields (such as notes) without specifying wildcards.

The GG DBA should consider implementing Microsoft SQL’s Full-Text Indexing
feature. Microsoft documentation is available on the internet.

Several notes:

• Search Tool & Public Website use the same search engine, but the PW search capabilities are
supplemented by some PW code

• The Search Tool is a stand-alone program
• The Search Tool has two distinct modes

o Text Box
o Query By Example grid (“QBE”) Recommended method

Think of the search engine as using a “wide net.” At first glance, it may not be obvious why
some records are returned by the search. The “odd” results are most likely due to the search
finding matches in multiple fields.

search features of GRIN-Global Page | 5

In the following example, the search string was “Van deman” In the search results, it is obvious
why the first and third accessions are listed, but why the second?

Looking at the accession’s details, the Narrative mentions “Van Deman.” On the PW, the
Narrative comes from the Accession Note field, and in this database, that field was one that the
DBA had indexed – hence it was searched.

search features of GRIN-Global Page | 6

Using Search Text in the Public Website
The Public Website search can handle text in the search when constructed properly, such as the
following:

sorghum and @accession.initial_received_date > '2020'

In this example, the user was looking for sorghum accessions that were recently added to the collection
(after 2020). More on this in the section Public Website Searches Using the @

Search Engine Evolution - Enhancements in Server Release 1.9.9.2
The Search Engine (SE) has evolved, and in server release 1.9.9.2, the functionality has expanded. For
example, the search engine now has extended SQL support. This SE fixes many of the issues between
the PW and SE regarding visible, active, and available (status) check boxes. The latest version of the SE
implemented a completely new way for the PW to filter by these status values. Other changes include:

• Speed increases on simple searches
• Full text indexing
• List of Items Change
• Changes to Public Website queries
• Extended SQL Support to additional key words: BETWEEN, EXCEPT, UNION, INTERSECT, NOT IN,

…

Speed Improvements
Checking for web visibility or availability was slowing down simple PW searches such as PI 500000
because the search’s formatted section might be only @accession.is_web_visible = ‘Y’ -- this would

search features of GRIN-Global Page | 7

return 800,000 results, taking a few seconds to complete, whereas now the SE examines the freeform
section first and converts the results into a criteria to combine with the formatted section.

Public Website
Basically…
the Search For box on the Public Website is equal to the text box in the Search Tool.

=

The difference is that in some cases the Public Website uses additional logic to handle the
is_web_visible flags and other issues specific to the PW.

There are three levels of sort on the output of the public website searches:

1. The highest weighted field is found first (genus hits before others)
2. Accessions with PI prefixes before Non-PIs*
3. Most-recently received accessions are found first

Organizations other than NPGS that are running GRIN-Global may set the preferred prefix from “PI” to
their organizations preferred prefix. Notes for administrators relevant to this are in Appendix B.

When there are more than 500 (or whatever your limit is set to) accessions that are genus hits on PI
numbers, the most recent of those is first. If there are less than 500 PI records for the genus you are
going to see recent non-PI genus hits further down the list and recent PI non-genus hits even further
down. That is not all recent accessions will be at the top because the other sorts have a higher
precedence.

search features of GRIN-Global Page | 8

The Public Website has a dual personality. External users (non genebank staff), use the PW to
search for, and order accessions. Internal staff, whose Public Website logins have been
associated by the GG Admin to their CT login, have additional features, including the ability to
run SQL queries against the database. Refer to the appendix section SQL Queries for Searching
the Database on using the Public Website to search the database using SQL queries.

The search text formatted in the Search Tool text box used by internal genebank staff can also
be copied and used in the Search box on the Public Website. This may be handy when an
external user requests assistance obtaining information from the database that is not available
via any Public Website options. An internal staff user can format the query in the Search Tool,
send the query text to the external user and explain how to drop the query text in the search
box. (See Public Website search constructs.)

Advanced Searches
On the Advanced Search tab, additional criteria may be included to supplement the text inputted in the
search box:

search features of GRIN-Global Page | 9

What Does the Search Engine Search?
The search engine (SE) has three main code sections:

1. Formatted
2. Lists
3. Unformatted

1. Formatted: What it’s told to search for
The user creates formatted searches from QBE with SQL-like syntax starting with the at sign (@)
Ex: @accession.accession_number_part1 = 'PI' AND @site.site_id IN (3)

2. Lists: Identifier (ID) lists
The Search List function looks for certain patterns in the text provided in the listed items. It first
determines the number of blocks of text separated by spaces (also known as “tokens”).

Number of Tokens the Search Engine Assumes Example
4 Inventory identifier NA 51425 .001 PL
3 Accession identifier GMAL 3764 .a

1 (text) Accession identifier CZ12345twery
1 (numeric) Order Request identifier 345102

 Plant Names
When there are 4 tokens – the SE assumes the items are inventory items, since the inventory
identifier may have up to four items (prefix, number, suffix, and inventory type form). When there
are three tokens, it assumes these are the three parts of the accession identifier. The List Search is
also programmed to use a single token and look for accessions matching the one text string (some
genebanks use only the accession prefix field to contain the entire accession identifier).

3. Unformatted - Freeform Searches
Enter words (and/or numbers) and the SE tries to find them as best it can

A. It will first search IDs such as PI 500000
(using either accession or inventory ID)

B. Each word is checked for an exact match on 22 fields (determined by the DBA using the
sys_search_autofield table) (see autofields)

C. Words are also checked in any existing full-text indexes.
The GG DBA can index any text field, usually large fields such as Note fields (comments) to
meet an organization’s requirements. The GG table sys.fulltext.indexes lists these fields.
(see Full-Text Indexing)

search features of GRIN-Global Page | 10

Users can combine formatted and freeform criteria or append formatted criteria to the end of a
list search. Searches work best when the formatted text is appended after the list of items
(since that is where the PW tacks it on).

List Search on the Public Websites
The original GRIN-Global Public Website had a checkbox that need to be selected in order to use the List
Search. In the current Public Website, the List search has its own tab.

On the public website, if you enter a valid order ID in the List Search box, the search will return
the accessions included in the request.

Original PW

The checkbox “Alternative Search method...” initiates the List Search

Current Public Website List Search

search features of GRIN-Global Page | 11

List Search in the Search Tool

In releases prior to server 1.9.8.2, the search would work with a list in the text box even when
this radio button wasn’t selected. Now it must be selected for a list of IDs.

Remember to switch radio buttons after a List Search. Otherwise, a typical search will fail.

search features of GRIN-Global Page | 12

Extension of the List Search
It is possible to append a formatted search string to a list of items. For example, the following example is
a valid search:

In the search without the @crop_trait.coded_name = 'Fall growth' statement, five accessions were
found, but with it, four. When switching to the Crop Trait Observation dataview and re-running the
search, the reason is more apparent:

search features of GRIN-Global Page | 13

Search Comments
When using the Search Tool, you can include comments. This is helpful when copying the search
statement to the Curator Tool to build a Dynamic Folder:

• when you use a double dash -- on a line, anything after the double dash is treated as a
comment

• to comment multiple lines, start with /* and then end your comment with */

Curator Tool – Searching via Dynamic Folders
Dynamic Folders
The Curator Tool has two types of folders, static and dynamic. Dynamic folders (also referred to as
dynamic queries) are basically stored queries in a CT user’s List Panel. The query most likely was created
by copying generated text from a Search Tool query. A big advantage of setting up a dynamic folder is
that after the query folder has been created, the folder retains your search criteria and eliminates the
need to redoing a query in the Search Tool.

A complete Dynamic Folders guide is online: https://www.grin-global.org/docs/gg_dynamic_folders.pdf

https://www.grin-global.org/docs/gg_dynamic_folders.pdf

search features of GRIN-Global Page | 14

IDs & Lookups
When searching on a field that uses LOOKUP IDs, the ID numbers are listed in the search statement. If
you are curious, open the respective dataview and look for the corresponding records.

In the screen above, there were 31 species records matching “Zea.” The following screen shows the
corresponding 31 species records in the Taxonomy Species dataview:

search features of GRIN-Global Page | 15

Wildcards and finding Empty / Missing Stuff / Nulls

The Search Tool uses the percent sign (%), the asterisk (*), and the underscore (_) as wildcard
characters.

% and * behave differently in the Public Website. Full text indexing will handle asterisks at the
end of the word (*), whereas if you use a trailing % sign, only the autofield search is used.

In the Search Too, the * converts to LIKE ‘%’

Using Quotes
Using quotes ensures that the full term is searched. Two examples below, with and without quotes -
and the number of found records:

Search string Records Found What the Search Engine is Looking For
‘yellow rain’ 0 the two words yellow rain - exactly as

entered
yellow rain 66 either word, yellow, or rain, in any of the

fields that are searched
‘rain’ 638 any occurrence of the word rain in any of the

fields being searched
rain 638 any occurrence of the word rain in any of the

fields being searched

search features of GRIN-Global Page | 16

Sometimes it is desirable to find “what’s missing.”

NOT EQUAL TO
!= operator (same as <>)

Use the != or the <> (“not equal to”) operator as needed, as in:

@accession.accession_number_part1 != 'PI'
-or -
@accession.accession_number_part1 <> 'PI

Nulls
NULL values represent missing unknown data. By default, a table column can hold NULL values.

@accession.accession_number_part3 IS NULL

If necessary (because of the dataviews), if the QBE will not generate the IS NULL or IS NOT NULL code,
hand code the appropriate clause in the Search Criteria box:

AND inventory.parent_inventory_id IS NOT NULL

NOT IN
Used when fields involve lookup values. For example, when you have a search such as:

You can use NOT IN to exclude lookup values.

Extended SQL Support
Additional SQL terms can be used now:

search features of GRIN-Global Page | 17

• BETWEEN
• WHERE
• EXCEPT
• INTERSECT
• GETDATE()
• DATEDIFF()
• COUNT
• DISTINCT

The ST can’t handle an entire SQL select statement, only a statement beginning with a SQL
WHERE clause.

- comments are valid (double dash) --
also valid w/ dynamic folders:

- WHERE may be used in the Search Tool:

WHERE accession.accession_number_part2 BETWEEN 500000 AND 500050

Rather than type from scratch in the Search Tool’s Search Criteria box, first input a s ample in
the QBE cells above the grid, and then edit the generated text.

search features of GRIN-Global Page | 18

Reserved Words & Wildcards -- Examples
Wildcard /
Operator /
Reserved Words

Examples /
Notes

%
(percent symbol)

* (asterisk) also

It is recommended to
use the % rather than
the *.
(Date searches work
with %, but not with
* - this is a known
(reported) bug.)

Use to broaden searches, especially when the exact spelling is
unknown. The field must be a text field. Either wildcard (% or *) allows
a match of any string of any length (including zero length)

Examples:

Rubus%

Prunus%var will locate any Prunus with “var” included;
%var% will locate any accessions with the text “var” as part of its taxon
 ‘2015%’

_
(underscore)

The wild card underscore character _
Represents any single character. Multiple underscores may be used if
needed. The field must be a text field.

Solanum_x% will find:
 Solanum x doddsii and
 Solanum x sucrense

If you need to search for the underscore character rather than have it
act as wildcard, enclose it in brackets, such as:
@inventory_action.action_name_code LIKE 'INS[_]%'
 (in this example, the 4th character must be an underscore character)

<>
!=

(not equal to)

Can be used to indicate “not equal to.” The field can be either a text
or numeric field.

– when the field is a text field, the criterion must be enclosed by
quotes – single quotes: ‘PI’ or double quotes: “PI”

– when the field is a numeric field, the criterion is not enclosed
in quotes

search features of GRIN-Global Page | 19

Wildcard /
Operator /
Reserved Words

Examples /
Notes

IS NULL /
IS NOT NULL

NULL values represent missing unknown data. By default, a table
column can hold NULL values.
Note: NULL and 0 are not equivalent.

IN /
NOT IN

Used when the criterion field is using a lookup table. (Lookups
generate an IN (…) clause.) The numbers in the parentheses are the
Lookup Key values in the database.

LIKE The LIKE operator is used to search for a specified pattern.
Example: LIKE ‘CAPSICUM%’

In this case the QBE is saying find any text that begins with
“Capsicum.” The trailing percent symbol indicates that any records
with any text after “capsicum” should be included if found.

BETWEEN

When a range of values is needed, construct your criteria using a
range.

For example:
@order_request.ordered_date > ‘2015-01-31’ AND
order_request.ordered_date < ‘2015-03-01’
(finds the orders for February, 2015)

Same results, using BETWEEN
@order_request.ordered_date
BETWEEN '2015-01-31' AND '2015-03-01'

Note: BETWEEN can be used with text as well, such as searching for a
range between ‘GBK-0100’ and ‘GBK-0200’

Date Fields Searching for dates can be tricky because the date field includes the
time of day as well. Refer to Date Fields for details.

The following are valid searches:

@accession.created_date like '2015%'
@accession.created_date like '2015-09-%'
@accession.created_date like '2015-09-05%'
@accession.created_date like '2015-%-05%'

search features of GRIN-Global Page | 20

Wildcard /
Operator /
Reserved Words

Examples /
Notes

GETDATE() Retrieves database current date/time in SQL Server

DATEDIFF() Calculates the difference between two dates

WHERE The ST can’t handle an entire SQL select statement, but it can handle
parts of a SQL WHERE clause. The Search Engine looks at which fields
you use so it knows which table to join when it builds the FROM
clause. And the dataview definition specifies which fields get selected.

WHERE taxonomy_genus.genus_name like 'Triticum%'
AND NOT EXISTS (SELECT * FROM accession_source acs
 WHERE accession.accession_id = acs.accession_id
 AND acs.source_type_code = 'COLLECTED')

COUNT(*) A query using COUNT to find rows with many inventories (from one
accession)

in the Search Tool or dynamic folder:

@ taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(*) FROM inventory i WHERE
i.accession_id = accession.accession_id) > 32

Subqueries

A subquery is a query within a query – the inner query is resolved first.

Can be used in various ways, such as to search by specific owner
Example:
@accession.owned_by IN (SELECT cooperator_id FROM cooperator
WHERE last_name = 'Millard')

Example: A query using COUNT to find rows with many inventories
(from one accession)

in the Search Tool or dynamic folder:

@ taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(*) FROM inventory i WHERE
i.accession_id = accession.accession_id) > 32

search features of GRIN-Global Page | 21

Wildcard /
Operator /
Reserved Words

Examples /
Notes

DISTINCT
[server >= 1.9.9.2]

The SELECT DISTINCT statement is used to return only distinct
(different) values. Inside a table, a column often contains many
duplicate values; and sometimes you only want to list the different
(distinct) values.

Example: List accession records with inventories having more than 2
different owners

WHERE taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(distinct i.owned_by) FROM inventory i
WHERE i.accession_id = accession.accession_id) > 2

In the Search Tool, change the first line to:

@taxonomy_genus.genus_name = 'Zea'

LEN function
[server >= 1.9.9.2]

The LEN function determines the string length. This could be used to
find long plant names

WHERE LEN(accession_inv_name.plant_name) > 36

EXCEPT
[server >= 1.9.9.2]

Returns any distinct values from the query to the left of the EXCEPT
operator that are not also returned from the right query.

The following EXCEPT query is used to track orders not yet completed
(order_request.completed_date IS NULL) when a curator has been
alerted (action_name_code = 'CURALERTED') about an NC7 order
(site_id = 16), but he has not cleared it and the order is still pending
(the curator hasn’t cleared the order (action_name_code =
'CURCLEARED').

EXCEPT
@site.site_id IN (16) AND @order_request.completed_date IS NULL
AND @order_request_action.action_name_code = 'CURALERTED'
AND @order_request_action.cooperator_id IN (122186)

search features of GRIN-Global Page | 22

Wildcard /
Operator /
Reserved Words

Examples /
Notes

INTERSECT
[The GG server
release must be >=
1.9.9.2]

The INTERSECT operator is used to combine like rows from two
queries. It returns rows that are in common between both results.

For example, using the search tool, find accessions with specific
observation values for two different traits. Example: find kernel color
White and primary race Corn Belt Dent.

@crop.name = 'Maize' AND @crop_trait_lang.title = 'Primary
Race' AND @crop_trait_code_lang.title = 'Corn Belt Dent'
INTERSECT
@crop.name = 'Maize' AND @crop_trait_lang.title = 'KERNEL
COLOR' AND @crop_trait_code_lang.title = 'White'
INTERSECT
@site.site_id IN (16) AND @inventory.is_distributable = 'Y'
AND @inventory.is_available = 'Y'

A similar, but faster version of the query, using the trait IDs:

@crop_trait_observation.crop_trait_id = 89001 AND
@crop_trait_code_lang.title = 'Corn Belt Dent'
INTERSECT
@crop_trait_observation.crop_trait_id = 89027 AND
@crop_trait_code_lang.title = 'White'
INTERSECT
@site.site_id IN (16) AND @inventory.is_distributable = 'Y'
AND @inventory.is_available = 'Y'

search features of GRIN-Global Page | 23

Wildcard /
Operator /
Reserved Words

Examples /
Notes

--DUMPSQL
[server >= 1.9.9.2]

With –DUMPSQL, the search engine has an option to deliberately
throw an error and show the SQL it generated when the first line of
the query is this comment: --DUMPSQL (See DUMPSQL.)

search features of GRIN-Global Page | 24

Maintenance Policy, such as in the following example:

The code above:
WHERE @inventory.quantity_on_hand > inventory.regeneration_critical_quantity
AND
@inventory.is_distributable = 'y' AND @inventory.is_available = 'y'
AND
@vc_inventory.pure_live_seed < @inventory.distribution_critical_quantity
AND
@inventory_maint_policy.maintenance_name = 'NC7-medicinals'

In the query above, 13 inventory lots were identified as having quantities of viable seeds that were less
than the desired distribution quantities.

search features of GRIN-Global Page | 25

Full Text Indexing
A full text index will have an entry in a generated index for each term or word found in a specified table
field. These indexes are established by the genebank’s GG administrator for specific fields in the
database; additional fields can be indexed over time. This feature provides significant changes to the
Public Website users’ searches.

Administrator’s Note: Full text indexing requires the GG administrator to use SQL Server’s Full Text
Indexing methodology. See also Appendix A.

Example:

Releases pre- 1.9.9.2 Release 1.9.9.2
PW: ‘%weedy red rice%’ PW: weedy red rice

NPGS:
In Release 1.9.9.2 and later, the following fields are now set to full text indexing:

Some stop words (such as "the" and "and") that are both common and typically not meaningful are
ignored by the search. (sample stop words)

How would you know what fields are indexed? When logged into the Public Website, run the following
SQL:

SELECT DISTINCT
 object_name(fic.[object_id])as table_name,
 [name]
FROM
 sys.fulltext_index_columns fic
 INNER JOIN sys.columns c

https://www.textfixer.com/tutorials/common-english-words.txt

search features of GRIN-Global Page | 26

 ON c.[object_id] = fic.[object_id]
 AND c.[column_id] = fic.[column_id]

Considerations
A Public Website search for %Cornus rugosa% may find accessions which at first glance in the list may
seem like not a valid match. In this example, the following displays in NPGS’s database:

Using the Ames 21980 accession, the detail page shows:

The search is basically asking for either word to be found, Cornus, or rugosa. Any words specified
between the %...%

When the same string is used, but in quotes – ‘%Cornus rugosa%’ – the list of records will not include
that record:

search features of GRIN-Global Page | 27

Using the Ames 29520 accession, the detail page shows:

Using the quotes ensures that the full term is searched, in this case, Cornus rugosa.

Two examples, with and without quotes - and the number of found records:

Search string Records Found What the Search Engine is Looking For
‘yellow rain’ 0 the two words yellow rain - exactly as

entered
yellow rain 66 either word, yellow, or rain, in any of the

fields that are searched
‘rain’ 638 any occurrence of the word rain in any of the

fields being searched
rain 638 any occurrence of the word rain in any of the

fields being searched

search features of GRIN-Global Page | 28

Extended SQL Support
WHERE
SQL WHERE clauses work in the Search Tool. However, since the search engine doesn’t use table aliases,
use full table names when constructing statements.

@taxonomy_genus.genus_name LIKE 'Glycine%' equals

WHERE taxonomy_genus.genus_name LIKE 'Glycine%'

In the following example, a comment (text preceded with --) is also illustrated.

The following code can be used in the Search Tool:

-- Find accessions owned by Esther which are active, but not available
WHERE accession.owned_by=107186
AND accession.status_code = 'ACTIVE'
AND NOT EXISTS (SELECT * FROM inventory WHERE accession_id = accession.accession_id
 AND is_distributable = 'Y' AND is_available = 'Y' and owned_by=107186)

NOT
…now allowed in freeform queries:

Ex: Bahamas AND NOT gossypium
Ex: Malus NOT (KAZ or Canada or USA or GBR)

BETWEEN
 @accession.accession_number_part2 BETWEEN 500000 AND 500050

@order_request.ordered_date BETWEEN '2015-01-31' AND '2015-03-01'

INTERSECT
https://www.techonthenet.com/sql/intersect.php

The INTERSECT operator is used to combine like rows from two queries. It returns rows that are in
common between both results.

search features of GRIN-Global Page | 29

For example, using the search tool, find accessions with specific observation values for two different
traits. Example: find kernel color White and primary race Corn Belt Dent.

@crop.name = 'Maize' AND @crop_trait_lang.title = 'Primary Race' AND
@crop_trait_code_lang.title = 'Corn Belt Dent'
INTERSECT
@crop.name = 'Maize' AND @crop_trait_lang.title = 'KERNEL COLOR' AND
@crop_trait_code_lang.title = 'White'
INTERSECT
@site.site_id IN (16) AND @inventory.is_distributable = 'Y' AND @inventory.is_available = 'Y'

A similar, but faster version of the query, using the trait IDs:

@crop_trait_observation.crop_trait_id = 89001 AND @crop_trait_code_lang.title = 'Corn Belt
Dent'
INTERSECT
@crop_trait_observation.crop_trait_id = 89027 AND @crop_trait_code_lang.title = 'White'
INTERSECT
@site.site_id IN (16) AND @inventory.is_distributable = 'Y' AND @inventory.is_available = 'Y'

Besides INTERSECT, UNION and EXCEPT can be used to fine tune searches.

INTERSECT Example: Looking for aronia accessions that have an available inventory and have an
inventory with an image attached, available or not. That requires fancier SQL, such as an INTERSECT.

This search produces incorrect results:

@taxonomy_genus.genus_name = 'aronia'

search features of GRIN-Global Page | 30

and @accession.status_code = 'ACTIVE'
and @accession.is_web_visible = 'Y'
AND @inventory.is_distributable = 'Y'
AND @inventory.is_available = 'Y'
AND @accession_inv_attach.category_code = 'IMAGE'

With INTERSECT, the search produces correct results:

@taxonomy_genus.genus_name = 'aronia'
and @accession.status_code = 'ACTIVE'
and @accession.is_web_visible = 'Y'
INTERSECT @inventory.is_distributable = 'Y' AND @inventory.is_available = 'Y'
INTERSECT @accession_inv_attach.category_code = 'IMAGE'

EXCEPT FUNCTION
Returns any distinct values from the query to the left of the EXCEPT operator that are not also returned
from the right query.

The following EXCEPT query is used to track the orders when a curator has been alerted
(action_name_code = 'CURALERTED') about an NC7 order (site_id = 16), but he has not cleared it and
the order is still pending (the curator hasn’t cleared the order (action_name_code = 'CURCLEARED').

@site.site_id IN (16) AND @order_request.completed_date IS NULL AND
@order_request_action.action_name_code = 'CURALERTED' AND
@order_request_action.cooperator_id IN (122186)

EXCEPT

@order_request_action.action_name_code = 'CURCLEARED' AND
@order_request_action.cooperator_id IN (122186)

-- Millard is 122186

LEN function
The LEN function determines the string length. This could be used to find long plant names

WHERE LEN(accession_inv_name.plant_name) > 36

search features of GRIN-Global Page | 31

DateDiff function to find recent viabilities
 WHERE datediff(day, inventory_viability.tested_date, getdate()) < 180

@inventory_viability.inventory_viability_id LIKE '%'
AND datediff(day, inventory_viability.tested_date, getdate()) < 180

Subqueries
A subquery is a query within a query – the inner query is resolved first.

Can be used in various ways, such as to search by specific owner
Ex: @accession.owned_by IN (SELECT cooperator_id FROM cooperator WHERE last_name = 'Millard')

Ex2: A nested subquery for site name:

@accession.owned_by IN
 (SELECT cooperator_id FROM cooperator WHERE site_id =
 (SELECT site_id FROM site WHERE site_short_name = 'NC7'))

Ex3: A query using COUNT to find rows with many inventories (from one accession)

in the Search Tool or dynamic folder:

@ taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(*) FROM inventory i WHERE i.accession_id = accession.accession_id) > 32

in a SQL query:

WHERE taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(*) FROM inventory i WHERE i.accession_id = accession.accession_id) > 32

Ex4: A query using a dataview’s calculated field COUNT to determine the number of orders with a
specified number of items for a specified year:

@order_request.completed_date LIKE '%2019%'
AND @site.site_short_name = 'NC7'
AND (SELECT count(*) FROM order_request_item WHERE order_request_id =
order_request.order_request_id) >=250

search features of GRIN-Global Page | 32

DISTINCT
The SELECT DISTINCT statement is used to return only distinct (different) values. Inside a table, a
column often contains many duplicate values; and sometimes you only want to list the different
(distinct) values.

Example: List More than 2 inventory owners

WHERE taxonomy_genus.genus_name = 'Zea'
AND (SELECT COUNT(distinct i.owned_by) FROM inventory i WHERE i.accession_id =
accession.accession_id) > 2

NOT EXISTS
Similar to EXCEPT…

The EXISTS operator is used to test for the existence of any record in a subquery. The EXISTS operator
returns true if the subquery returns one or more records. If a subquery returns any rows at all, EXISTS
subquery is TRUE, and NOT EXISTS subquery is FALSE.

SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name WHERE condition);

Example: Find records without a recent viability test

WHERE
inventory.inventory_id IS NOT NULL /* necessary if resolving outside inventory */
AND NOT EXISTS
(SELECT * FROM inventory_viability iv
 WHERE iv.inventory_id = inventory.inventory_id -- link subquery to main select
 AND datediff(day, iv.tested_date, getdate()) < 365)

search features of GRIN-Global Page | 33

Displaying the SQL: --DUMPSQL
- SE4 has an option to deliberately throw an error and show the SQL it generated when the first

line of the query is this comment: --DUMPSQL

search features of GRIN-Global Page | 34

Appendix A: Fields used in the GG Searches
The GRIN-Global administrator can determine which fields are to be searched using two different
approaches. GG “Auto” fields may be designated in the sys_search_autofield table. The second method
requires the GG administrator to use SQL Server’s Full Text Indexing methodology.

Autofields
The following fields were designated by the National Plant Germplasm System (NPGS) GG administrator
to be used for text box searches. (Every GG genebank can determine what fields are to be included.)

SQL to List the “Autofields” Used in the Search Box
SELECT table_name, field_name
 FROM sys_search_autofield ssa
 JOIN sys_table_field stf ON stf.sys_table_field_id = ssa.sys_table_field_id
 JOIN sys_table st ON st.sys_table_id = stf.sys_table_id
 ORDER BY 1,2

search features of GRIN-Global Page | 35

Full Text Indexing
The fields listed below were indexed by the National Plant Germplasm System (NPGS) GG administrator.

SQL to List the Fields Having Full Text Indexes
SELECT DISTINCT
 object_name(fic.[object_id])as table_name,
 [name]
FROM
 sys.fulltext_index_columns fic
 INNER JOIN sys.columns c
 ON c.[object_id] = fic.[object_id]
 AND c.[column_id] = fic.[column_id]

search features of GRIN-Global Page | 36

Appendix B: SQL Queries on the Public Website
Overview
Genebank staff who have had their Public Website account connected to their Curator Tool account by
their GG administrator, when logged into the Public Website, will have the Tools option visible on the
menu. From there, select Web Query to display the box for inputting SQL. Log in; select Tools | Web
Query You can copy or type valid SQL in the box as shown:

You can open a .txt or Word file in which SQL has been stored and cut in paste into the query box, or use
the PW feature to Create a query SQL text file.

3 Basic Components
In general, in GRIN-Global, most SQL statements will use these three words.

SELECT – what columns to display
FROM – what tables to search
WHERE – what criteria

In a valid SQL command, indicate what data you want to display and the conditions. In the GRIN-Global
Public Website, a user cannot modify data – only read. Statements such as INSERT or DELETE do not
work on the PW page.

Online there are multiple documents, tutorials, and examples on how to use SQL queries on the Public
Website. See https://www.grin-global.org/sql_examples.htm.

https://www.grin-global.org/sql_examples.htm

search features of GRIN-Global Page | 37

Public Website Searches Using the @
On the Public Website, you can also use @ search constructs. While it is not user friendly, if you know
the actual table and field names, using these searches provides more search capabilities on the Public
Website. Also, internal genebank staff can share these constructs with external users when appropriate.

search features of GRIN-Global Page | 38

Appendix C: Administrator Notes on Sorting Search Results
There are three levels of sort on the output of Public Website searches:

1. Highest weighted field hits first (genus hits before others)
2. Accessions with PI prefixes are listed before Non-PIs*
3. Most recently received accessions are listed first

* Organizations other than NPGS that are running GRIN-Global may set the preferred prefix from “PI” to
their organizations preferred prefix.

If there are more than 500 (or whatever your maximum limit is set to) accessions that are genus hits on
PI numbers, the most recent of those is first. If there are less than 500 PI records for the genus you are
searching, going to see recent non-PI genus hits further down the list and recent PI non-genus hits even
further down. That is, not all recent accessions will be at the top because the other sorts have a higher
precedence.

If as administrator of a GG system you want to change any of that behavior, you’ll need to know how
the sorting is controlled.

The first sort is by the weights of the freeform text fields, controlled by the get_search_autofields
dataview. The weights assigned to autosearch fields can be adjusted in the following CASE clause:

 , CASE

 WHEN field_name IN ('genus_name', 'title') THEN 0

 WHEN field_name IN ('species_name', 'adm1',
 'accession_number_part1') THEN 1

 ELSE 2

 END AS weight

Note that “title” refers to the country name from the code lang translation. So hitting on genus name or
country name are equally weighted, then species name, state name, or accession prefix for the next
level, then the rest of the autosearch fields and finally the full text index hits (not controlled by the
dataview).

The other two levels of sort are controlled by the PW dataviews web_search_overview_2 and
web_search_overview_noimages_2 with an ORDER BY clause at the end of the dataview:

-- Put PI numbers first, then sort by date received

ORDER BY CASE WHEN a.accession_number_part1 = 'PI' THEN 0 ELSE 1 END,
COALESCE(a.initial_received_date, a.created_date) DESC, pi_number

Actually there is a fourth level of sort by PI number if the received date is exactly the same. Another
system could change that ORDER BY to whatever suits them.

search features of GRIN-Global Page | 39

The Search Tool retrieves the data in a different fashion. So the sort order as described above for the
Public Website doesn’t apply.

search features of GRIN-Global Page | 40

Appendix D: Document Change Notes

– June 26, 2025
• Additional information regarding IS NULL

– August 27, 2024
• editing / wording changes

– July 26, 2024
• editing / minor wording changes

– December 21, 2022
• added Note regarding BETWEEN
• also, corrected BETWEEN example

– June 21, 2022
• added Appendix B and details regarding PW sort priority preferences

– February 25, 2022
• added a dynamic query section with a link to the online Dynamic Query guide

– January 10, 2022
• mainly formatting changes

– July 12, 2021
• enhanced the section regarding calculating the actual quantities of viable seeds

– April 20, 2021
• formatted the table headings for the reserved words; therefore the headings are now included

in the TOC

– February 2, 2021
• elaborated on the three search types; added screen examples

– October 1, 2020
• added note on comments
• enhanced notes on using search text on the Public Website

– September 20, 2020
• enhanced List Search notes

– August 12, 2020
• expanded information on BETWEEN

search features of GRIN-Global Page | 41

– February 29, 2020
• added use case searching using Live Seed (a calculated field)

– April 24, 2019
• changed example and wording for the WHERE clause

– December 17, 2018
• changed example and wording for the WHERE clause

	Searching in GRIN-Global
	Revision Date
	Author
	Major Contributor
	TOC
	Search Engine and Search Tool Overview
	Overview
	SQL Server Full-Text Indexing
	Using Search Text in the Public Website
	Search Engine Evolution - Enhancements in Server Release 1.9.9.2
	Speed Improvements
	Public Website
	Advanced Searches

	What Does the Search Engine Search?
	List Search on the Public Websites
	Original PW
	The checkbox “Alternative Search method...” initiates the List Search Current Public Website List Search

	List Search in the Search Tool
	Extension of the List Search

	Search Comments
	Curator Tool – Searching via Dynamic Folders
	Dynamic Folders

	IDs & Lookups
	Wildcards and finding Empty / Missing Stuff / Nulls
	Using Quotes
	NOT EQUAL TO
	Nulls
	NOT IN

	Extended SQL Support
	Reserved Words & Wildcards -- Examples
	Full Text Indexing
	NPGS:
	Considerations

	Extended SQL Support
	WHERE
	NOT
	BETWEEN
	INTERSECT
	EXCEPT FUNCTION
	LEN function
	DateDiff function to find recent viabilities
	Subqueries
	DISTINCT
	NOT EXISTS
	Displaying the SQL: --DUMPSQL

	Appendix A: Fields used in the GG Searches
	Autofields
	SQL to List the “Autofields” Used in the Search Box

	Full Text Indexing
	SQL to List the Fields Having Full Text Indexes

	Appendix B: SQL Queries on the Public Website
	Overview
	3 Basic Components
	Public Website Searches Using the @

	Appendix C: Administrator Notes on Sorting Search Results
	Appendix D: Document Change Notes
	– June 26, 2025
	– August 27, 2024
	– July 26, 2024
	– December 21, 2022
	– June 21, 2022
	– February 25, 2022
	– January 10, 2022
	– July 12, 2021
	– April 20, 2021
	– February 2, 2021
	– October 1, 2020
	– September 20, 2020
	– August 12, 2020
	– February 29, 2020
	– April 24, 2019
	– December 17, 2018

